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ABSTRACT: We study the recursive relations for a quiver gauge theory with the gauge
group SU(N;7) x SU(N3) with bifundamental fermions transforming as (N1, N2). We work
out the recursive relation for the amplitudes involving a pair of quark and antiquark and
gluons of each gauge group. We realize directly in the recursive relations the invariance
under the order preserving permutations of the gluons of the first and the second gauge
group. We check the proposed relations for MHV, 6-point and 7-point amplitudes and
find the agreements with the known results and the known relations with the single gauge
group amplitudes. The proposed recursive relation is much more efficient in calculating the
amplitudes than using the known relations with the amplitudes of the single gauge group.
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1. Introduction

Recently, we have witnessed the rapid progress in the calculation of the multiparton am-
plitudes. The inflection point is the seminal work by Witten [[l], a twistor theoretical
reformulation of perturbative super Yang-Mills theory in terms of topological string the-
ory. Witten established a correspondence between multiparticle amplitude in ' = 4 super
Yang-Mills on R*! and open string amplitude in the topological B model in the Calabi-Yau
super manifold CP3*. Maximally helicity-violating (MHYV) amplitudes at tree level were
successfully reproduced. Motivated by this, subsequent progresses were made to give a
prescription for computing MHV and non-MHV amplitudes at the tree level and beyond.

Two important developments are worth mentioning, related to the current work. One
is the work done by Cachazo, Svrcek and Witten (CSW) [B], where the simple rules were

suggested for computing non-MHV amplitudes using the MHV amplitudes as vertices and



a simple off-shell description for the propagator. This method is extended to one-loop
computations in [J—[L{].

The other is the development of the BCFW recursive relation [[[1, [[J], where one can
find the recursive relation between an n-point gluon amplitude and amplitudes of smaller
number of external particles. Thus if we know just 3-point gluon amplitudes, general n-
point amplitudes can be worked out recursively. This recursion relation at the tree level is
extended to the case involving fermions in [[[3, [[4]. The extension of the recursion relation
to the one-loop computations is subsequently developed [[L§—[L§].

In this paper, we work out the tree level recursion relation and CSW rules for a quiver
gauge theory SU(N7) x SU(N2) with bifundamental fermions transforming as (N7, Na).
Given that such quiver gauge theories are dual to the topological string on suitable super
orbifolds [[Lf], this is a natural generalization of the recursive relation of a single gauge
group SU(N), which can be regarded as a subamplitude of N' = 4 super Yang-Mills
theory. In addition, this work is relevant for the computation of multiparticle amplitudes
of the standard model in a high energy regime well above the Fermi scale [20-PJ. In [i
the MHV amplitudes were worked out using the topological string theory. Here we work
out more general amplitudes using the recursive relations. Furthermore, CSW relation is
suggested and is checked for the simplest cases.

The resulting recursive relation is easy to state. We are mostly interested in ampli-
tudes involving one bifundamental pairs ¢¢g and gluons of two gauge groups. The relevant
subamplitudes can be obtained by summing over subamplitudes of a gauge theory of a
single factor with order-preserving reshuffling of the gluons of two different gauge groups.
The recursive relation of the product gauge group can be obtained by taking care of such
reshuffling at the level of recursive relation directly.

If we have amplitudes invariant under such order preserving reshuffling up to n-point
amplitudes, the (n+1)-point amplitudes can be obtained using the similar recursive proce-
dure to a single gauge group case together with the addition of the contributions generated
by such reshuffling. The CSW relation can be obtained using the MHV amplitudes for the
product gauge group as vertices and the usual off-shell prescription for the propagator.

The contents of this paper are as follows. In section B, we review the basic spinor for-
malism and the BCFW recursive relations. In section [J we provide relevant background and
work out some examples of the recursive relations for the product gauge group. Section [, i
and appendix B provide detailed calculation results for MHV, 6-point, and 7-point ampli-
tudes respectively. In section [, finally, we work out the CSW relations. Several technical
details are relegated to appendices.

Some of our conventions are as follows.

1. Particle 1 and 2 denote + helicity antiquark and — helicity quark respectively. We
take all external momenta to be outgoing.

2. Particle 3, 4, --- denote gluons. (For the convenience, gluons of different gauge
groups are not distinguished by notations such as bars.)

3. Aabd+f " denotes a subamplitude of the product gauge group theory. Here the
superscripts denote all gluons and their helicities and the subscripts denote the gluons



which belong to the first gauge group. For example, A§+5+3767 denotes a 6-point
subamplitude where gluon 3~ belongs to the first gauge group and 47, 57, 6~ to the
second. We omitted fermions since in most cases they are 1 and 2. If not the case,

g Yend o e
we specify them with extra superscripts in front of the gluons as Ag%___q Jrod T f T

+9- )56
e.g. AéP 275767 denotes a 4-point subamplitude where P+ and 2~ are fermions and
5T and 6~ are gluons of the first and the second gauge group respectively. Finally, if
the gluons are in numerical order, we omit the gluon indices and indicate only their

O T

helicities as A’} . e.g. A§47+++ denotes a 7-point subamplitude where gluon 3~

and 4~ belong to the first gauge group and 5%, 67, 7t to the second.

4. A denotes a subamplitude of the single gauge group theory and A a purely gluonic
subamplitude. The superscripts are the same as the cases of the product gauge group
theory.

5. When there is no confusion, the term amplitude is used in replacement for the term

subamplitude.

2. BCFW recursive relations

For the momentum p, of a massless particle in four dimension, one can use the spinor
representation as, p®* = p“aza = )\ng where A} and Xg are positive and negative chirality
spinors respectively BJ]. (On Minkowskian, Xg = )\_g) Moreover, the on-shell states
of the particles in a scattering process, spinors and helicity vectors, can be expressed in
terms of these momentum spinors. In result, a subamplitude of the scattering process is

expressed in terms of only spinorial inner products, which are defined as (ij) = €abAp, )\gj

and [ij] = edi))\gi)\gj.

Before mentioning the BCFW recursion relation, let us list some notations used for
the spinor expressions of the amplitudes [fl, [].

tijh = (Di+pj + D1+ )

Q> pelil = S (i) rd]
GO PO po)ld) = D0 (i) [rs)(sj) (2.1)
[il(zpr)(Zps)lj] = ZZ[iT](rs)[sj]

Now, the BCFW recursion relation states that a subamplitude is expressed as a sum
over the products of two subamplitudes of smaller number of particles and a scalar propa-

gator as,
. . . Shy L S5 ~
An(...,m,...,n,...)zz Z A("',m,---,Ph)ﬁA(—P b A, (2.2)
S h=+4,—
where

P = sz,

part



~ P2 ~

(m|P|n]
P? ~
ﬁm =Pm+ 7)\771)‘717
(m|P|n]
P? ~
ﬁn =Pn — 7)\m)\n
(m|P|n]

In (R.9), the sum S is over all possible decompositions of external particles into two
parts, keeping the overall orders of the particles determined according to the color factor-

1 On decomposition, A(--- ,m, - ,ﬁh), which we call a upper amplitude, is the

ization.
amplitude of the particles of the first part and P, whereas A(—ﬁ_h <o ,m, - ), a lower
amplitude, is the amplitude of the particles of the second part and —P. We take, by
convention, the sum in the first equation of (R.J) to be over all particles of the second
part. In the recursive process, the reference particles m and n stay in the upper and lower
amplitudes respectively.

We will call each element in the recursive sum a configuration and denote it as (par-
ticles in the upper amplitude | h, —h | particles in the lower amplitude). For example,

(5t67127|T7[3+47) denotes A(5%,67,1%,27, P*) A, A(~P~,3%,47) where P = 3 + 4.

3. Recursive relations for the quiver gauge theory

Consider a quiver type gauge theory with product gauge group SU(N;1)xSU(N3). Consider
also quarks which transform in the bifundamental representation (N7, N3) under these
gauge groups and their complex conjugates. Then the full multiparton amplitudes M
involving a quark-antiquark pair with n; gluons of SU(N7) and ny gluons of SU(N3) can

be written as [R4, [Ig],

M(q,l,...,nl;i...,ﬁ27g): Z (Xl"'Xm),‘j(Yl---Ym)ﬁ
P(n1),P(n2) (3.1)

XAN1N2(Q71""anlaq_;Qala---aﬁQaCj)

Here the sum is over all permutations of ny gluons of SU(N;) gauge group between the
quark and the antiquark and similarly of ng gluons of SU(N2) gauge group between the
antiquark and the quark. The ij, ji indices refer to SU(N7) and SU(N3) color indices at
the quark-antiquark pair. X4, Y'Z are generators of SU(N;) and SU(N;) gauge groups,
respectively.

Eq. (B.) implies that the subamplitude Ay, x, is invariant under the all possible
permutations of the gluons maintaining the order of both the first and the second set of
gluons. We call this permutation the order preserving permutation(OPP). The invariance
of the subamplitude under OPP is due to the fact that all Feynman diagrams with such

In purely gluonic cases and single gauge group cases there is only one overall order, but in product
gauge group cases there exist several different overall orders generated by so called OPP(order preserving
permutation), which is explained in section E



permutations of the gluons have the same color factor (X1---X™),;(Y!- < Y")5 and
contribute to the same Ap, n,.

Though in the Feynman diagrams we should sum over all diagrams generated by OPP,
the situation can be greatly improved if we encode the invariance under OPP directly for
the BCFW type recursive relation. In our formalism, the amplitudes which are related by
OPP are equivalent.

Suppose this type of equivalence holds up to n-point amplitudes. If we consider (n+1)-
point amplitudes, this could be obtained from the n-point amplitudes and lower ones using
the recursive relation similar to the single gauge group case. The result is not invariant
under OPP in general. We apply OPP again to the resulting configurations. Many of
the OPP elements do not generate new amplitudes. We call an OPP reducible, which
does not exchange the particles in the upper amplitude with those in the lower amplitude
in the expression appearing in the recursive relation. Such a reducible OPP does not
generate anything new, since the upper and the lower amplitudes are separately invariant
under the OPP. Only an irreducible OPP, which is not a reducible OPP, can generate new
configurations. For an (n 4 1)-point amplitude, we just sum over all such configurations
generated by irreducible OPP.

Also we know that in the Feynman diagram there are no vertices connecting gluons of
different gauge groups in the product gauge group theory. This is translated to the rule
in the recursive relation for the product gauge group that whenever we have amplitudes
directly connecting gluons of different gauge groups without fermion lines, these should
vanish.

Though the number of configurations tends to increase by OPP, but many of the
configurations are vanishing. Let us express an n-point subamplitude in (B.1) as,

n—2
Aniny =YD > (n—klk) (3.2)

k=2 OPP c.p.

/

number set

where (n —k|k) denotes a configuration with (n— k4 1)-point upper amplitude and (k+1)-
point lower amplitude and the last sum is over possible cyclic permutations. In (B.2), the
last two sums are over all possible configurations with fixed k. We call a collection of
such configurations a number set, in the sense that the number of particles in the upper
and the lower amplitudes are the same in the collection. Then we can show that in each
number set there are at most two nonvanishing configurations, considering the helicity
contribution of the internal line. In result, from the first sum in (B.9), there are at most
2(n — 3) nonvanishing configurations which contribute to an n-point product gauge group
amplitude. This number of configurations is equal to that of a single gauge group amplitude.
The detailed argument for this statement is given in appendix [].

On the other hand, the subamplitudes A, n, defined in (B.1]) are readily obtained
in terms of the single gauge group multiparton amplitudes .4 involving a quark-antiquark

pair [P4],

AniNe (@31, 01, G54, 1, g, §) = ZA(q,l,...,nl;i...,ﬁg,cj) (3.3)
OPP



OPP configurations
3456 | (5T6-1T27[3t4)t | (67112 [3t4-51)2 | (1127 [3T4 5167)3
3546 | (47671727 |3+5H)* | (671727 |3t5147)% | (1727 |3t514767)°
3564 | (67471727 |3F5F)7 | (471727 |3F5767)8 | (1727 |3F5T6747)°
5346 | (47671127 |5+31)10 | (671727 |5+3+47)1! (1+2 |5+3t4-67)12
(67112-5F[3T47)13 | (112-5F3T4=67)1 | (27513147 671T)15
5364 | (67471727 |5F3%)16 | (4=172-|5t3+67)" (1+2 |5+3T6-47)18
(4711275%[3T67)19 | (112751316747)20 | (2 5F[3t6 47112
5634 (4~ 1+2 5t6-31)22 (1+2 |5t6-3tT47)23
(47112751 ]631)24 | (172-57]673147)2% | (2-5t|6-3T4-11)20
(11275167 [3T47)27 | (2756314~ 11)28

Table 1: All possible configurations for A3, 7.

Here the sum over OPP renders all Feynman diagrams which connect directly the gluons
of SU(Ny) with those of SU(N2) to be canceled so that the equality is realized. Thus in
principle the amplitudes of the product gauge group can be obtained from those of single
gauge group with quarks transforming as fundamental representation. The right-hand side
of (B.3) can be calculated either using the Feynman diagrams or the recursive relations
worked out in [[L3, [[4].

However, this way of getting product gauge group amplitude is inefficient, since there
are many terms in the sum of (B.3). In fact, for an n-point subamplitude, the number of
configurations in the right-hand side of (B.J) is roughly, ,C, (number of OPP) x 2(n — 3)
(number of configurations for a single gauge group amplitude), where p is the number of
particles of the first gauge group. Whereas, as mentioned above, the number of configura-
tions in our direct recursive calculation is at most 2(n — 3) and much smaller than that in
the sum over single gauge group amplitudes in (B.3).

The final point is that in choosing the reference lines in computing the recursive re-
lations we should choose the reference lines consistent with OPP. For example we cannot
select two gluons of different gauge group as reference lines in recursive calculations. Such a
selection is inconsistent with the OPP that reverses the order of any two gluons of different
gauge groups, since the two reference lines cannot be permuted in the recursive relation.

3.1 An example of configurations: A;4_+_

In this case, gluon 37 and 4~ belong to the first gauge group and gluon 5 and 6~ belong
to the second. Here the OPP generates all possible permutations of the gluons preserving
the order of 37 and 4~ and of 5% and 6~. Then with these permutations and taking
27 (quark) and 3% as reference lines, we get initially 56 configurations by the use of the
of BCFW relation expressed in (2.3). All these configurations are listed in table [l and
some of them are shown in figure f]. In table [, each row represents the possible recursive
diagrams given the order of the gluons as specified in the leftmost part and each column

represents a different number set.



1+
6~ 2-
+ _
. +
6~ — 3+
5+ = §+ 5+ 4~

(b) Config. 2 (c) Config. 3
+ ~
0 6 2 5
+ —
— +
1t 3t
1+ i~ 3+ 6~ 4~
(d) Config. 4 (e) Config. 28 (f) Config. 15

Figure 1: Some configurations for A3, 7.

In the table, we numbered the configurations with superscripts and there are two
configurations for each number since the internal line has two helicity compositions, +—
and —+. However, if either of the upper or the lower amplitude has external particles less
than five, only one helicity composition of the internal line contributes.? In result, there
are actually 28 configurations in this case and we are not explicit about the helicity of the
internal line in the table. At first glance, the number of configurations is much larger (by
at least 6, which is the number of OPP, times) than that of the single gauge group case
with the same helicity composition. However, as previously mentioned, the number reduces
greatly since many of them are equivalent, so counted just once, and, what is better, some
of them vanish by the property that there is no interaction between the gluons of different
gauge groups.

Let us specify this reduction of the configurations in detail with the above example.
At first, we should find configurations generated by reducible OPP and discard them in
each column of the table. For example, let us look into the configuration 15. The lower

2For the 4-point amplitudes, only nonvanishing amplitudes are MHV(=MHV) amplitudes. Therefore, the
flip of any helicity of the nonvanishing amplitudes gives vanishing helicity compositions, such as (—+---+)
or (+—---—). For the 3-point amplitudes, both (—++) and (——+) amplitudes are nonvanishing. However,
as explained in [@], the upper amplitude of (— 4+ +) type and the lower amplitude of (— — +) type vanish
because of the choice of the reference momenta. See (@)



OPP configurations

3456 | (5T6-1T27[3147)! | (671127 [3T451)2 | (1723747 5167)3
3546 | (4767172~ |3t5H)4

3564 (4=1t27|3t5%67)%

5346 (1T275F3T4=67)14 | (275F 346" 1H)1°
5364 | (47112751 [3T6)1?

5634 (27516~ [3t411)28

Table 2: Configurations related by irreducible OPP for A3, T~. Most of them vanish except 1
and 28.

+P-)\3+4—6—
amplitude of 15 is a product gauge group amplitude Agi Prysrame” However, this is
equal to A:(Si+P_)3+6_4_ (lower amplitude of the configuration 21) and A:(STP_)G_?’M_ (lower

amplitude of the configuration 26), since they are generated by OPP, 346 — 364 and
346 — 634 respectively, and an amplitude of a product gauge group theory is invariant
under OPP. That is, the configurations 21 and 26 are generated by this reducible OPP
from 15 hence are equivalent. We just keep configuration 15 for convenience. In the similar
way, we can deduce that the configurations generated by irreducible OPP are 1(=13=27),
2(=b=11), 3(=6=9=12=18=23), 4(=7=10=16), 8(=17=22), 14(=20=25), 15(=21=26),
19(=24) and 28. See table B

Moreover, if either of the upper or the lower amplitude of one configuration has gluons
of different gauge groups without any fermion(1% or 27), this configuration vanishes. This
originates from the fact that there is no gluonic vertex where the gluons of different gauge
groups are connected in the Feynman diagrams of the product gauge group theory. For
instance, configuration 4 vanishes since there is no vertex connecting gluon 4 and 5, which
belong to different gauge groups. Configurations 2, 3, 8, 14, and 19 are all discarded for
the similar reason.

Now, there remain only 3 configurations, 1, 15 and 28. However, configuration 15
vanishes since the helicity along the fermion line should be conserved. In detail, the upper
amplitude of 15 is AgP_Q_)E)Jr, whereas P should be an antiquark and has positive helicity
to have a nonvanishing amplitude.

Finally, there remain just two nonvanishing configurations, 1 and 28. As can be seen
in table [, these are the only nonvanishing configurations in each column, i.e. in each
number set. This coincides with the statement mentioned above that there are at most
two (allowing the two helicity compositions of the internal line) nonvanishing configurations
in each number set. The general argument for the number of configurations appears in

appendix [A].
3.2 A calculation example: A;4_+_

Once we construct all configurations for the recursive relation, the rest calculation is just
the same as the gluonic and the single gauge group cases. In a configuration, the upper
and the lower amplitudes have the particles of shifted momenta p,,, p, and P. Then, in
the sense that the final form of the amplitude should be expressed with the spinors of the



external momenta only, we need to express the spinors of such shifted momenta as [L1]],

2

)‘7’75 = >\m, Aﬁm = )‘m - WAW
p? ~ o~
s = A+ W)\m A = A,
<.j5> _ <.|AP|",L]7 [ﬁ.] _ <m|Pi|.]
[Pn) (mP)

(3.4)

The denominators in the last line, []371] and (m13>, appear always in pair in each config-

uration as (mP)[Pn] = (m|P|n], since each configuration should be invariant under the

rescaling of the spinors of ﬁ, Ap — tAp and X]g — t_lxlg.

Let us calculate the configurations of the example of the previous subsection,

o
A34 .

There were two nonvanishing configurations, (576-1727[3747) and (2-576~[374-11).

The first one is,

L 5yP-5t6- 1 _miare
(5+6- 172 [3T47) = AUT2IPTOT6T 1 4-PriTa

P tsg ©
_ —[15%[2s] 1 (P3P
 [2P)[P1)[25][56][61] (34)[34] [34)[4P]

- [15]3(24)3
 t934(23)(34)[56][61](2]3 + 4[1]

where the last equality was obtained applying (B.4) to this case as,

~ ~ tas ~
s =\ X
27 2T AR
X§:X37

~ 9213 + 4

Pe] (2[3 + 4|]

Similarly, we get the second configuration,

~ ~ Si15— -1  Bva g
@ 5te[3tam1t) = ALTERTET 2 4T -PTsTa
t341
(26)°(P6) 1 (3PP

(25)(56)(6P) (P2) tsa1 [P3)[34][41][1P]
_ (26)*[13]°
~ t301(25)(56)[34][41] (23 + 4[1]

where we used

>\’2\ = >\2,
ng\ = X?v
(op) _ (313

[P3]

(3.5)

(3.6)

(3.8)



~ 213+4+1
pay_ 3+ 1l
(2P)
The above result for AgﬁfJﬁ agrees with the result by the direct use of Feynman rules

and with the sum over corresponding single gauge group amplitudes as in (B.3).

3.3 Getting amplitudes from other amplitudes: exchanging gluon indices

As can be seen in (@) and (@), an amplitude of the product gauge group theory is
invariant under OPP. For example, A3, 574767 is equal to A§;4_5+6+. Using this property
of product gauge group amplitudes, we can calculate all amplitudes from some primitive
amplitudes, which are defined below, just by exchanging gluon indices appropriately. For
instance, we deduce that A§g4+576+ can be obtained from A§;475+6+ by exchanging gluon
indices 4 and 5, since A§g4+576+ is equal to A§;574+6+, which becomes A§;475+6+ with 4
and 5 exchanged. In the similar way, we easily notice that A3,2 56" is equal to A3 > 4767
with 3 46,4 — 3,5 —4 and 6 — 5.

Then we can define, by convention, the primitive amplitudes as the amplitudes in
which gluons of different gauge groups are completely split and the number of the the first
gauge group gluons is less than or equal to the half of the total number of the gluons. In
the case of 4-point and 5-point amplitudes, there is just one class of primitive amplitudes,
A; . For 6-point and 7-point cases, there are two, A3 and Ajz;. In general, for N-point
function, there are [N/2 — 1] classes of primitive amplitudes. In this paper, we only give
the results of the primitives.

We calculated all primitive MHV amplitudes and six and seven point primitive next-to-
MHYV amplitudes and compared the results with the sums of single gauge group amplitudes
numerically, by the use of (B.3). For the sum over the single gauge group amplitudes, we
used previous results of 6-point amplitudes in [[J] and new results of 7-point amplitudes
(appendix [d) which were calculated recursively as well. All results are given in the sec-

tion fl), (H and appendix B

4. All MHV amplitudes

For the convenience of the proof, all primitive MHV amplitudes can be divided into several
cases according to the number of the gluons that belong to each gauge group and the
location of the — helicity gluon. In table ] are listed these cases with reference momenta
and the corresponding configurations. In the table, a is the gluon with — helicity and
i, j are the numbers of the gluons of the first and second gauge group respectively. For
example, in case 5, gluon 3 belongs to the first gauge group and gluon 4, 5, - -- belong to
the second, where the — helicity gluon is one of 4, 5, - --. As before, particle 1T and 2~ are
the antiquark and the quark respectively. Similar conventions are used in the other cases.

In each case there is just one configuration by judicious choice of the reference lines,
giving expected simple result for the MHV amplitude,

,10,



case ref. line configuration
1 i>2,a>5 2,3 | (---a---1T27| 73141
2 i>2 a=4 2,3 (---1727|7F[3t47)
3 i>3,a=3 3,4 (---1T2737 T~ [4t5H)
4 i=2a=3 3,4 (2737 .| [4t1t)
50i=1,>2a>4| 2,3 2 a3
6|i=1,j>2a=3| 24 (---2737 [t [4t5t)
7| i=j=1a=4 2,3 (2-4- |3t 1H)
8| i=j=1,a=3 2, 4 (2737 |4t 1t)

Table 3: Configurations for all MHV amplitudes.

(2a)° (1a)
T (20) - (o1) (20) - (o) (4.1)
SU(Ny) SU(N>)

where e represent the gluons of each gauge group in the order specified by the color factor-
ization. For the MHV amplitudes, the similar construction of configurations gives expected

result,
[1a]°[2a]
[20] - - - [01] [26] - - - [01] (4.2)
SU(N1) SU(N2)

In the followings, we provide the calculation results of the configurations in table f|. Each
result has the form of (f.1)).

ease 1 — —(2a)3(1a) 1 [34]3

(2P)(Pe) -+ (o1)(20) -+ (o1) (34)[34] [4P][P3]

B (2a>3<1a>

= T 23 (30) (4e) - - - (1) (20) - (o1 (4.3)
e 2 — —(2P)3(1P) 1 P3P

 (2P)(Pe) - - (81)(20) - - (1) (34)[34] 4P][34]

_ (24)3(14)

= T 2330 (de) - (e1) (28] -~ (o) (44)
ense 3 — —(23)3(13) 1 [45]3

 (23)(3D)(Pe) - - - (e1)(2e) - - - (e1) (45)[45] [5P][P4]

_ (23)3(13)

= 33134 (de) - (e1) (28] -~ (o1} (4.5)
e 4 —(23)%(P3) 1 [142[P4]

(23)(3P)(2e) - - - (e P) (41)[41] [P4][1P]

— 11 —



- = (45)

(4.7)

(4.8)

(24)3 (P4) 1 [133[P3]
(24)(4P)(P2) (31)[31] P3][31][1P]
(24)°(14)

T (23)(31)(24)(41) (4.9)

case 8 = (3 < 4) of case7

_ (23)%(13)
T (23)(31)(24) (41) (4.10)

5. 6-point next-to-MHYV amplitudes

In this section, we present the configurations and the calculation results of 2 primitive
classes of 6-point next-to-MHV amplitudes, As4 and Asz. For each amplitude, we provide
the corresponding nonvanishing configurations and the calculation result. All results are
compared to the sum over the corresponding single gauge group amplitudes via the equality
Aglﬂ: 516~

described in (B.3). We give the examples of this equality for the case of and

A§+4+5767 in table [. In each column of the table, the product gauge group amplitude in
the first row is the sum over the single gauge group amplitudes in the rows below. For
other product gauge group amplitudes, we can similarly find the corresponding single gauge

group amplitudes which contribute to the sum.

In the case of A3y, two of the amplitudes are obtained from others by using the scheme
of section 3. For instance, A3,* 576" is obtained from A3,;47576" by exchanging 3 with
5 and 4 with 6, since A§I4+5_6_ is equal to A§;6_3+4+. Similarly, we get A§;4+5+6_ from
A§Z4_5_6+ by the same substitution. In the case of Ag, there are no relationships like
these. We can get any other amplitude from these 2 classes of primitive amplitudes. In
each helicity composition, the configurations are obtained using the similar computations

of section [l As shown below, there are only 2 or 3 configurations for each amplitude.
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5.1

5.2

T 576 FiT5-6-
A§4456 A§456
¥4-5T6- F4T5-6-
A%456 A%456
+6-3+t4- +3t5-6—
A%634 Aflg356
3+5t4-6~ 4+5-316~
2. As AS++ AS+ +

A?é564 Aflg563
5+3T4-6-
AS++

5737674
AS

Table 4: Product gauge group amplitude as a sum over single gauge group amplitudes.

A3y

Azt = (374712 [ 5ret) + (273775641
(2|3 + 4/1)? (4]2 + 3|5)

= 250 G6)BAAL6]2 + 53] T Fazs (61231612 + 53] (5-1)

Az~ = (2737 P [4t5T6T1T) + (273756 T4t 1)
- (51)[24](5|2 + 3|4]2 B (31)[26](3]1 + 4/6]2
C 1934[23][34](56)(61) (1|3 + 4|2]  t134[25][56](34)(41)(1]3 + 4|2]

Ag bt = (3747127756 T) + (2737 4T 5T6 1) + (2737 T [pTe 4T 1)
B [14](26)3(6|2 + 54]
" 1256(25)(56)[34](2(5 + 6[1](6]2 + 5[3]
(23)3[15](3]6 + 1]5]
" 150 BOII61] (34)(4]6 -+ 1[5)(2]5 + 6/1
(6]2 + 3|5

T o 23] (A1) (612 + 53] (42 + 3]5] (5:3)
AdrT T = A3 5,4+ 6) (5.4)
At =612 T34 + (27516 T3 T4
- (24)3[15]3 B (26)3[13]3 (5.5)
 1934(23)(34)[56][61](2|3 + 4]1]  t341(25)(56)[34][41](2[3 + 4[1] '
AT = A T3 5,4+ 6) (5.6)
Az
Ayt =(@t2 374 [t 5tet) + (27477375 et
(4]5 + 6]2](4]5 + 6[1]? [25](3]2 + 4/5]? 5.7)

~ t123[23][31](45) (56) (6]5 + 4]2]  #245[24][45](61)(6]5 + 4]2]
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A7t = (27374 5 61T + (45T 6T 12737 + (2745 P36 1)
(51)(5|6 4 1[4]3
t234[23](56) (61)(5(6 + 1[3](1]6 + 5/4]

(23)%[46]*
t123[45][56] (2[4 + 5(6](1|6 + 5[4]
[16]2(25)°(513 + 116 .
t245(24)(45)[31](2[3 + 1/6](5/6 + 1(3] '

AP = (6712737 P [atst) + (1P27 3T A6 T) + (2737 T [Ats e 1)
_ (23)°[45)°
 t193[56](1]5 + 6[4](2|4 + 5]6]
(214 + 5|13
(24)(45)[61][13](5]2 + 4]3](2]4 + 5[6]
(6]2 + 3|4)3
t234[23](56) (52 + 4|3](1|2 + 3/4]

A=t =@ 3t 5 [P6T1h) + (47561273 T)
B (51)(5|6 + 1|3]? B (114 + 5/6](2|4 + 5/6]?
t561(56) (61)[24](1]6 + 5[4]  t123(23)(31)[45][56](1]6 4 5[4]

(5.10)

Ayt = (273 AT BT T) + (2734 [F5Te 1) + (274 T3 61T
[13]*(46)"
t123(45)(56) (6|4 + 5[2](4|5 + 6[1]
(24)2[15]3(4/6 + 15]
 1934(23)[56][61](3[6 + 1[5](4]5 + 6[1]
[25](6]2 + 4/5]3

5.11
to45[24][45](31) (3|2 + 4|5](6]4 + 5|2] (5:11)
Aft—— = (273 A5 67) + (6711273 T H4atsT)
B (2|5 + 6]4)3 B [13]2(25)3 (5.12)
t123(23)(31)[45][56] (2|4 + 5[6]  t245(24)(45)[61](2|4 + 516]| '
6. CSW relations
We denote the diagrams of the CSW calculation as,
(...ii...)(...ji...)...(...) (6.1)
~—_———
MHYV vertex
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4+

1+ 7

Figure 2: CSW diagram of (1727)(37475%)(6777).

where each part enclosed by parentheses represents a certain MHV vertex and i+, j&, - -
denote the external particles in each MHV vertex. For example, (1727)(37475T)(6777)
represents the diagram in fig .

The CSW diagrams for the product gauge group amplitude are obtained in similar way
that the configurations of the recursive relations are constructed. That is, we weave all pos-
sible MHV vertices considering all possible OPP, that is, allowing all permutations between
gluons of different gauge group, but preserving the order of gluons of each gauge group. In
doing this, however, the diagrams that have any vertex where different gauge group gluons
are connected without quark or antiquark are discarded. In addition, some diagrams any
of whose vertices includes quark and antiquark of same helicity are also discarded, as in the
recursive calculations. Some examples of the CSW diagrams and their calculation results
are given below. In the expression, w denotes an arbitrary antiholomorphic spinor.

AT =(2737)4 51T + (475 (112737) + (2747)(37 5T 1) + (37 1T) (27475 )
(4]2 + 3|w)?(14)
[3w][23](45) (51)(1|2 + 3|w)]
[5w]®(23)2
[4w][45](2|1 + 3|w](1]|2 + 3|w]
(312 + 4fw)?
[4w][24](51) (5|2 + 4|w]
[1w]?(24)2 (4|1 + 3|w]
[Bw][13](45) (2|1 + 3|w] (5|1 + 3|w]
[15]°[25]

= 6.2
[23][31][24][45][51] (62)

In the above, for example, the first diagram (2737)(4~571") is calculated as,
(23)3(P3) 1 (P4)%(14) (4]2 + 3Jw]*(14) (6.3)

(23)(3P)(P2) (23)3[23] (P4)(45)(51)(1P)  [3w][23](45)(51)(1|2 + 3|uw]

where |P) = (p2 + p3) - w = |2)[2w] + |3)[3w] was used. If we take w as one of |i], we get
the final equality (numerically), which is a correct MHV amplitude for the product gauge
group theory as expressed in ([.9). We give below the calculation results of two six point
next-to-MHV amplitudes with different helicity compositions. Each amplitude agrees with
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the result calculated by the use of recursive relations in section [j.

Ayr Tt =(3747)(5T6T1T27) + (2737)(475T611T)
+(476T17) (27375 + (4717)(2737516™)
(2|3 + 4|w)?
[Bw][4w][34][25](56) (61)
(4]2 + 3|w]?
(56](61) (5|2 + 3|w]
(23)2(4]1 + 6[w]?
t235(61](25](6|1 + 4w](5|2 + 3|w]
[1w]?(23)>
[4w][41](25)(56) (6|1 + 4|w]
(2|3 + 4/1)? (4]2 + 3|5)?

- (25)(56)[34][41](6]2 + 53] * t235(61)[23](6]2 + 5|3] (64)

[3w][23](56
3

+

Ay T =(57617)(1727374M) + (374M)(576T1727) + (2737)(4T5 671T)
+(275T)(374T6T1) + (576T11)(27374T) + (37471 (27576T)
[6w]*(23)*(13)
[5w][56](34)(41) (2|5 + 6|w](1]5 + 6|w]
(15)(5]2 + 3|w]?
[3w][23](41)(56)(61) (4|2 + 3|w]
B (15)(23)2(5]6 + 1]w]?(3|2 + 4|w]
t234(56)(61)(34)(1]5 + 6|w](2|3 + 4|w] (4|2 + 3|w]
4+ 3 < 5,4 < 6 of above terms
- (51)[24](5|2 + 3|4] (31)[26](3|1 + 4/6]?
T 1934[23][34](56) (61)(1]3 +4]2]  t134[25][56](34) (41) (1|3 + 4|2]

+

(6.5)
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A. Number of configurations

In general, if we put aside the helicity effects which make some configurations vanishing,
the number of configurations in a product gauge group amplitude does not exceed that of
a single gauge group amplitude. This can be shown in the following way.

In section ] we constructed a collection of all configurations with the same number of
particles in the upper(or lower) amplitude and denoted the collection as a number set. For
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a single gauge group amplitude, if we take two neighboring particles as reference lines, there
are evidently at most two (considering the two helicity compositions, (—+) and (+—), of
the internal line) configurations in a number set. Then how many configurations are there
in a number set of a product gauge group amplitude? To check this, it is convenient to
classify the configurations into two cases according to the helicity of the first gluon (namely
3) of either gauge group.

In the first case, where 3 has positive helicity, let us take 2~ and 3" as reference lines.
Then there are, according to the locations of 17 (antiquark) and 2~ (quark), possibly two
types of configurations,

(5— . |§+ ...... 1)
—~
g7 (A.1)
(- 19— ... ‘3+...)
—~ —~ S~
g g g
where g denote the gluons of the gauge group to which 3% belongs and ¢’ the gluons of
the other gauge group. Note that two types of configurations in ([A.1)) belong to different
number sets.

The second case, where 3 has negative helicity, has at least one pair of adjacent gluons,
n~ and (n+1)", which are in the same gauge group. If we take this two gluons as reference
particles, there are three types of configurations,

- N +o-
(-7 | (n+1) 1+27)

g g g
T e (D) +
@ A |t D) 1) A2
g g’ g g
tom A e [((n 1)
(172 n [(n+1)--)
g g/ g

where g denote the gluons of the gauge group including n~ and (n+1)* and ¢’ the gluons
of the other. Again these three types belong to different number sets.

Now suppose each of the above types of configurations is nonvanishing. Then if we
want to make other configurations from each configuration preserving the number set, we
should perform irreducible OPP or overall cyclic permutation including 17 and 27. In
fact, with these permutations we can, from one configuration in a number set, generate all
the other configurations which belong to the same number set. The other permutations
give the configurations which belong to other color bases. We see that, from each type
of configurations, it is impossible to generate different nonvanishing configurations in the
same number set. This means that each of the above types is, if nonvanishing, the only
configuration in each number set.

Let us examine this argument in detail with the first configuration of (A.1]). Suppose
we want to change the configuration into a different one which belongs to the same number
set. Then if we move a particle from the upper amplitude to the lower amplitude, we
should move another particle from the lower amplitude to the upper amplitude to preserve
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the number set. Now, let us try to move one of ¢’ in the upper amplitude to the lower
amplitude. Then from the lower amplitude we should move one of g, one of ¢, or 17 to
the upper amplitude. In the case of one of g, it is impossible to move the particle since
the order of g particles should be preserved in the OPP. It is also impossible to move one
of ¢/, because to move it to the upper amplitude it is permuted with the one moved from
the upper amplitude and this is not permitted in OPP. Finally, we cannot move 17 to the
upper amplitude, since the resulting lower amplitude consists of only gluons of different
gauge groups without g pair and vanishes. In result, it is impossible to make a different
nonvanishing configuration without changing the number set. Note that the reducible OPP
generates the same configuration.

By similar arguments, we confirm that the other types of configurations in ([A.1])
and (A.2) are the only nonvanishing configurations in each number set. In result, for
the case of product gauge group amplitudes, each number set has at most two configura-
tions. (Each type has two configurations allowing two helicity compositions of the internal
line, as in the case of single gauge group amplitudes.) This means that, as asserted, the
number of configurations for a product gauge group amplitude is equal to or smaller than
that of a single amplitude.

If we consider the configurations that do not contribute because of the helicity compo-
sitions, the situation may get better. In product gauge group amplitudes, all types of van-
ishing configurations owing to the helicity compositions in single gauge group amplitudes
also vanish and there is another type of vanishing configuration such as (27 --- |~ F|..-1F),
which appeared in section B.1. This type of configuration does not contribute since internal
particle P is a fermion and should have opposite helicity to 27(17) in the upper(lower)
amplitude.

B. 7-point next-to-MHYV amplitudes

We present here just the results of 7-point primitive amplitudes, Asq4 and Az, without
explicit configurations. All results coincide with the sums over the single gauge group
amplitudes as expected from (B.3). The 7-point single gauge group amplitudes used in the
comparison are given in appendix [d.

B.1 As

34 T [34][41](25)(56) (67) (7|1 + 4|3]
(2|(546)(7+1)[4)?
t147(71)(25)(56)(6]5 + 2|3](7|1 + 4|3]
(413 + 2|5)?
t235[23](67)(71)(6]5 + 2[3]

A-—HH — (2[3 + 4[1)?

(B.1)

A=ttt (31)(5[6 + 7|2](5](6 + 7)(1 + 4)|3)*
34 tse7t134(56)(67)(34) (41)(7]6 + 5[2](1|4 + 3]2]
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—++—+ _
Az, ==

At =

Fo—t+ _
Az, =

+ J
ta56[25][56](71)

 1934[23]

~ toset134(25)

—_

(3 3|2 + 5(6]

) [26](
(34)(41)(7]6 + 5/2]
(
{

/\

15)[24]
34J(56)

52 + 3]4)2
67)(T1)(1]4 + 3[2]

(B.2)

—

(61)(31)((31)(6]2 + 3|5] + (63)(41)[45])3
(67)(71)(34)(41) (1|4 + 3|2](1]7 + 6]5](3|(2 + 5)(6 + 7)|1)(6](2 + 5)(3 + 4)|1)
(31)(23)2[57]*

" 4567 [50][67](34) (413 (2[5 + 6[7] (1]7 + 6]5]

(31)(26)° (3|4 + 1]7]*(6]2 + 5/7]
(56)(34)(41)(2[5 + 6[7](6/(2 + 5)(3 + 4)[1)
(16)(23)*(6]7 + 1]4]*(3]2 + 5/4]
ter1t235(25)(67)(71) (512 + 3[4](3|(2 + 5)(6 + 7)[1)
(16)[24](6|2 + 3|4]3
 1934[23][34] (56)(67)(71)(5[2 + 3]4](1]4 + 3|2]

(B.3)

(31)(23)*[56]*
 ts67[67](34) (41) (1|7 + 6[5] (25 + 6|7]
B1)B|(1+4)(5+6)2)°
 t134(25)(56)(34) (41)(3[4 + 1]7](2|5 + 6]7](6](2 + 5)(3 + 4)|1)
(31)((31)(7|2 + 3|5] + (73)(41)[45])3
B (67)(34)(41) (1|4 + 3|2](1]7 + 6|5](3|(2 + 5)(6 + 7)|1)(6](2 + 5)(3 + 4)|1)
(23)2[14]2 (3|7 + 1/4]
T L (25) (56)[T11{6]7 + 14 (3[4 + 1]7]
(23)2(7|6 + 1]4]>(3|2 + 5/4]
te71t235(25)(67)(5]2 + 3|4](6]7 + 1]4](3|(2 + 5)(6 + 7)[1)
[24](7)2 + 3/4]®
T 231341(56) (67] (14 + 312] (5]2 + 314]

(B.4)

(24)3 (56 + 7|1]*(5[(6 + 7)(2 + 3)[4)

 tasatser(23)(34) (56) (67) (2]3 + 4[1](4](2 + 3)(

(57)((57) (4[5 + 23] + (45)

(56)(67)(71)(7|6 + 5|2])(7|1 + 4|3](7|(1 + 4)(2

_ (25)?[13]* (5|4 + 1[3]
t134[34][41](56) (67) (7|1 + 4|3](2|3 + 4|1]
(25)2(4|7 + 1|6]%(5|2 + 3]6]
tar1taszs(71)(23)(3]2 + 5[6](7[(1 + 4)(2 + 3)|5)
[26](4]2 + 5/6]>

to56[25][56](34)(71)(3|2 + 5|6](7|6 + 5/|2]

5+6)[7)
(67)(63])°
+3)[5])(4/(2 + 3)(5 + 6)[7)

+

(B.5)
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Aft = [17]2(24)%(26)3 ((26) (4]3 + 2[7] + (42)(56)[57])

—(23)(34)(25)(56) (2|5 + 6|7](2|3 + 4|1](2|(3 4+ 4)(7 + 1)[6)(2|(5 + 6)(7 + 1)|4)

B (26) (4]1 + 7|3]

t1a7t256(71)(25)(56) (7|1 + 4[3](2|(5 + 6)(7 + 1)|4)
[13]3(26)3 (6|1 + 4/3]

 t134[34][41](25)(56) (67) (7|4 + 1]3](2]3 + 4[1]
(24)3[57)*
* ts67(23)(34)[56][67] (1|7 + 6]5] (2|5 + 6[7]
N (16)(24)3 (6|7 + 1|5]3
ter1to34(23)(34)(67)(T1)(1]7 + 6]5](2|(3 + 4)(7 + 1)|6)

(B.6)

24)3(2|5 + 6[1]3

A+t =
34 5 4 6|7](2|3 + 4[1](2|(3 + 4)(7 + 1)6)

_/\

- (23)(34)(25) (56

( (2
(27
25)

I’

t341[34][41]< <56> 67 ><2‘3 +4’1]
24)°[56)°

7]{(1|7 + 6|5](2]5 + 6|7]
(24)°(7]1 + 6[5]°

 tar1t234(23)(34)(67)(1]7 + 6[5](2](3 + 4)(7 + 1)[6)

2
5
{

* ts67(23)(34)[6

ALt = (61)(6](7 +1)(3 +4)2)*
te71(23)(34)(67)(T1)(1|7 + 6]5](4|3 + 2|5]
(61)(6]5 + 2|3]?
t235(41)(67)(71)[25](4[3 + 2[5]
B (2|5 + 6]7)%(1|5 + 6|7]
t567(56][67](23) (34) (41)(1|7 + 6[5]

At = (57)4(2|3 + 4|1]?
~ ts67(23)(34)(56)(67) (516 + 7/1](4/(2 + 3)(5 + 6)[7)
(BT)YH7|1 + 4[3)?
~(41)(56)(67)(7]6 + 5|2](7](1 + 4)(2 + 3)[5)(4|(2 + 3)(5 + 6)|7)
(25)2[16]3 (5|7 + 1/6]
 t671(23)(34)[67][71](4]7 + 116](5|6 + 7|1]
N (25)2(7|4 + 1|6]3(5|2 + 3]6]
tar1tazs(23)(41)(3|2 + 5[6](4[7 + 1]6)(7|(1 + 4)(2 + 3)[5)
. [26)(7]2 + 5/6]”
t256(25][56](34) (41)(3|2 + 5[6] (7|6 + 5[2]

(B.9)

AFH—— — _ (26)°(2[3 + 4[1]
34 (23)(34)(25)(56)[71](2|5 + 6|7](2](5 + 6)(1 + 7)|4)

,20,



26)3(7|1 + 4/3)?

25)(56)(2|(5 +6)(1 4+ 7)|4)
(2|7 + 6[5)3

t567(23)(34)(41)[56][67](2(5 + 6[7]

(
(

 toselria(41)

(B.10)

B.2 A,

Attt (4]3 + 2/1]*(4(3 + 1|2]
3 t123(23][31](45)(56)(67) (7|1 + 3|2]
(415 + 6[2](4|(5 + 6)(7 + 1)|3]?
taset713(71)(45)(56)(6]5 + 4|2](7|1 + 3[2]
[25](3]2 + 4|5]?
t245(24][45)(67) (71)(6]5 + 4/2]

(B.11)

ATttt (51)(52 + 314]°
3 t234(23](56)(67)(71)(5]2 + 4[3](1|2 + 3/4]
(23)2(5|6 + 7|4]*
* tse7t123(56)(67) (76 + 54)(1]2 + 3[4](5[(6 + 7)(1 + 3)[2)
N (25)3(5|6 + 7|1]2(5|(1 + 3)(6 + 7)|5)
(24)(45)(56)(67)[31](5]|2 + 4|3](7|(1 + 3)(2 + 4)|5)(2|(1 + 3)(6 + 7)|5)
(25)3(3|7 + 1]6)%(5|2 + 4/6]
taustr13(24) (45) (71) (2[4 + 5[6))7](1 + 3) (2 + 45)
(23)°[46]*
t Taso (TLY[A5][56] (214 = 5/6](7]6 + 5/4]

(B.12)

At (23)°[45](61)"
3 (67)(71)(1]7 4 6|5](1]2 + 3|4](2|(4 + 5)(6 + 7)[1)(1](2 + 3)(4 + 5)|6)
(61)(6(7 +1)(4 + 5)[2)3
71 (24)(45)(67)(T1)(6]7 + 1|3](5|2 + 4|3](2|(4 + 5)(6 + 7)[1)
N (61)(6]2 + 3/4]>
t234[23](56)(67)(T1) (5|2 + 4|3](1|2 + 3/4]
(26)3[17]%(6]1 + 3|7]
T s (20 (45) (56)[31] (2] 1 + 37){6]7 + 1]3]
N (23)2(6|5 + 4|7)*
t123t456(45) (56) (4|5 + 6(7](2[1 + 3|7](1|(2 + 3)(4 + 5)[6)
(23)[57)*
T Tae7 5611671 (24) (45 + 6|7 (1]7 + 6/3]

(B.13)

J—— (23)2(2|4 + 5/6)*
3

[67](24)(45) (2|3 + 1|7](5](6 + 7)(1 + 3)|2)(2|(4 + 5)(6 + 7)|1)
2|7+ 3[1?

24y (45) (56)[T][13](6]7 + 113](2]3 + 1[7]
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N (2|(445)(6 + 1)|7)3
te71(24)(45)(67) (5|4 + 2|3](6]|7 + 1|3](2](4 4+ 5)(6 + 7)|1)
N (23)2(7|6 + 5/4)3
tse7t123(56)(67) (1|2 + 3[4](5/(6 + 7)(1 + 3)|2)
(712 + 3)4)
t234[23](56)(67) (5|4 + 2|3](1|2 + 3|4]

(B.14)

AF—H = (51)(52 4 4/3]?
t234[24](56) (67)(71)(1]2 + 3[4]
~Bl6+ 7B +2)[1){5(6 +T7)(3+1)[2)°
tsert123(23)(3)(56)(67)(7[6 + 5[4](1|2 + 3|4]
B (24 + 5|6]2(1]4 + 5/6]
t456[45][56](23) (31)(71)(7|6 + 5[4]

(B.15)

AF Tt = (16)(46)" (6|7 + 1|3
(45)(56)(67)(71)(6]5 + 4[2](4|(3 + 2)(1 + 7)[6)(6](5 + 4)(3 + 2)[1)
n (16)(24)*(6]7 4 1|5]> (4]3 + 2|5]
ter1t234(23)(67)(T1)(1|7 + 6]5](3|2 + 4[5](4[(3 + 2)(1 + 7)|6)
B (16)[25](6]2 + 4/5]°
t245[24][45](67)(71)(31)(3]2 + 4|5](6]5 + 4|2]
(46)* (2|1 + 3|7])%(1|2 + 3|7]
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C. 7-point Ag

We provide all 7-point next-to-MHYV single gauge group amplitudes, which are used in the
comparison with the results of the 7-point product gauge group amplitudes.
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